منوعات

عند ترتيب العمليات نبدأ اولاً بالاقواس

المحتويات

عند ترتيب العمليات نبدأ اولاً بالاقواس

ترتيب العمليات الحسابية (التي تسمى أحيانًا أسبقية المعامل) في علوم الرياضيات وبرمجة الحاسوب، هي قاعدة تستعمل لتوضيح أي العمليات الحسابية يجب تنفيذها أولًا في جملة حسابية معينة.

وفي علم الرياضيات ومعظم لغات الحاسوب، يتم تنفيذ عمليات الضرب قبل الجمع، وقد كان هذا هو الحال منذ إدخال الترميز الجبري الحديث. على سبيل المثال في التعبير 2 + 3 × 4، الجواب هو 14. الأقواس «(..) و{..} و[..]»، لديها قواعد خاصة بها، يمكن أن تستخدم لتفادي الخلط بين العمليات، وبالتالي يمكن كتابة التعبير السابق بالصيغة التالية: 2 + (3 × 4)، ولكن القوسين لا لزوم لهما هنا، لأن الأولوية ماتزال للضرب حتى بدونهما. عندما تم تقديم الأس في القرنين السادس عشر والسابع عشر، فقد تم إعطاء الأسبقية على كل من الجمع والضرب، ويمكن وضعها فقط كخط مرتفع أعلى الأساس.هكذا 3 + 25 = 28 و3 × 25 = 75.


وقد وضعت هذه القواعد لتوضيح كيفية التعامل مع الرموز والعمليات الحسابية، مع السماح باستخدام الرموز كأداة توضيحية فقط غايتها تسهيل العمليات الحسابية وإعطاءها صورة أكثر دقة مما يسهل الحصول على إجابة نهائية صحيحة، ويتحقق ذلك بفهم هذه الرموز وغاية كل واحد منها فمثلًا يمكن استخدام الأقواس () للإشارة إلى أن العملية الحسابية داخل القوس تتمتع بالأولوية عن العمليات الأخرى وكمثال توضيحي (2 + 3) × 4 = 20، بسبب وجود الأقواس أُعطت الأولولية للجمع بالرغم من أولوية الضرب في حال عدم وجود الأقواس، أما عند الحاجة إلى وجود أكثر من قوس في معادلة واحدة يمكن استخدام شكل آخر من أشكال الأقواس لتجنب أي التباس كما في [2 × (3 + 4)] – 5 = 9.

ملاحظات حول أولويات العمليات الحسابية

في حالة تكافؤ العمليات الحسابية في المسألة بالأولوية؛

أي احتواء المسألة على عمليتي ضرب، أو عملية قسمة وضرب مثلاً، أو عمليتي جمع وطرح أو أكثر، فإنّ الحل يكون بالبدء من اليمين إلى اليسار باللغة العربية،

ومن اليسار لليمين باللغة الإنجليزية؛ فمثلاً عند حل المسألة الرياضية الآتية: 30÷5×3 فإن الناتج يكون عند:

البدء باليمين كما يلي: 30÷5×3 = 6×3 = 18 (حل صحيح) البدء باليسار كما يلي: 30÷5×3 = 30÷15 = 2 (حل خاطئ) في حال احتواء المسألة الرياضية على أكثر من أس؛ أي رفع نفس العدد لأسين،

فإن الحل يتم بالبدء من الأعلى للأسفل؛ مثل 432؛ أي (43) مرفوعة للقوة 2، فيتم حلها كما يلي: حساب أولاً: 3² = 9؛ أي تصبح المسألة: 49 = 4×4×4×4×4×4×4×4×4، وبالتالي فإن النتيجة النهائية تساوي 262144

ما هو ترتيب العمليات الحسابية

مجموعةٌ من القواعد الواجب اتباعها عند حل أي مسألةٍ رياضيةٍ، مما يسمح بالحصول على إجابةٍ واحدةٍ صحيحةٍ، عندما تتم عملية الحساب وفق الترتيب التالي:

  1. الأقواس (Parentheses).
  2. الأس (Exponents).
  3. الضرب والقسمة (Multiplication and Division).
  4. الجمع والطرح (Addition and Subtraction).

لاحظ أن الضرب والقسمة مدرجان معًا في نفس البند، فإذا صادف وجود الضرب والقسمة في ذات العملية الحسابية، تكون القاعدة هي الانتقال من اليسار إلى اليمين، والأمر نفسه ينطبق على الجمع والطرح .

يميل العديد من الأشخاص إلى حفظ ترتيب العمليات الحسابية من خلال ربطها بالكلمة “PEMDAS”، حيث يشير الحرف “P” إلى الأقواس (Parentheses)، بينما يشير الحرف “E” إلى الأسس (Exponents)، والحرف”M” إلى الضرب (Multiplication)، والحرف “D” إلى القسمة (Division)، أما الحرف”A” إلى الجمع (Addition)، والحرف “S” إلى الطرح (Subtraction).1

 

                     
السابق
الجبال و الوديان و الصحاري و الأنهار أمثلة على التضاريس
التالي
السبخات مناطق بيئية تندرج تحت الأنظمة البيئة العذبة.

اترك تعليقاً