المحتويات
قطعه من الفلين على شكل متوازي أضلاع مساحتها 270 سم 2 فأذا كان طول قاعدتها يساوي 18 سم فكم طول رتفاعها؟
متوازي الأضلاع هو عبارة عن رباعي أضلاع، فيه كل ضلعين متقابلين متوازيين ومتساويين من حيث الطول، ويتميز متوازي الأضلاع بمجموعةٍ من الخصائص، سنتحدث عنها في الفقرة اللاحقة.
لمتوازي الأضلاع أربعة رؤوس (أربع زوايا) وهناك خاصية تربط الزوايا الداخلية لمتوازي الأضلاع مع بعضها البعض، وهي أنّ كل زاويتين متقابلتين متساويتين بالقياس، كما أنّ مجموع هذه الزوايا الداخلية مجتمعة هو 360 درجةً، في حين أنّ كل زاويتين تقعان على ضلعٍ واحدٍ (يمكننا تسميتهما زاويتان متتاليتان) متكاملتان بمعنى أنّ مجموعهما يساوي 180 درجةً.
قطعة من الفلين على شكل متوازي اضلاع مساحتها 270 سم
خصائص متوازي الأضلاع
بفرض كان لدينا متوازي الأضلاع ABCD، كما هو موضحٌ بالشكل:
يمتلك متوازي الأضلاع الخصائص التالية:
- كل زاويتين متقابلتين في متوازي الأضلاع متساويتان، بمعنى أنّ (الزاوية A = الزاوية C) وكذلك (الزاوية B = الزاوية D).
- الزوايا المتتالية في متوازي الأضلاع في أي جانبٍ كان، هي زوايا متكاملة أي أنّ مجموعها يساوي 180 درجةً، بمعنى أنّ مجموع الزاويتين A وD هو 180 درجةً، وكذلك ومجموع D وC هو 180 درجةً، وكذلك الأمر بالنسبة لباقي الزوايا المتتالية.
- أطوال الأضلاع المتقابلة في متوازي الأضلاع متساوية في الطول، أي أنّ (AB = DC) و (AD = CB) وكل ضلعين متقابلين فيه متوازيان أي (AB ∥ DC) و (AD ∥ BC).
- إنّ محيط متوازي الأضلاع هو عبارة عن مجموع أطوال أضلاعه الأربعة، فإذا فرضنا أن طول (AB = a) و (BC = b)، يكون محيط متوازي الأضلاع (2a + 2b) بحسب الخصائص السابقة الذكر.
- لمتوازي الأضلاع قطران يصلان الزوايا المتقابلة مع بعضها، وهما AC وBD في الشكل إعلاه، وهذين القطرين يتقاطعان في نقطةٍ واحدةٍ O، وكذلك إنّ تقاطع هذين القطرين يقسم متوازي الأضلاع إلى أربعة مثلثاتٍ يتطابق كل اثنين متقابلين منها مع بعضهما، أو نقول أن كل قطرٍ يقسم متوازي الأضلاع إلى مثلثين متطابقين. هنا، ندعو قطرا متوازي الأضلاع متناصفان؛ أي كل منهما ينصف الآخر.
أنواع متوازي الأضلاع
- المعين وهو عبارة عن متوازي أضلاع جميع أضلاعه متساوية في الطول.
- المستطيل هو عبارة عن متوازي أضلاع جميع زواياه قائمة، كما أنّ قطراه متساوية الطول.
- المربع هو متوازي أضلاع تساوت أطوال جميع أضلاعه، وجميع زواياه قائمة، فضلًا عن كون أقطاره متساوية في الطول.
حساب مساحة متوازي الاضلاع
لدينا طريقتان لحساب مساحة متوازي الاضلاع، بالاعتماد على الارتفاع المتعلق بالقاعدة، وفي حال كان الارتفاع مجهولًا:
حساب مساحة متوازي الاضلاع بالاعتماد على أبعاده
حيث إذا افترضنا أنّ أبعاد متوازي الأضلاع هي a و b (القاعدة) والارتفاع المتعلق بالقاعدة هو h كما في الشكل:
تعطى مساحة مساحة متوازي الاضلاع بالشكل:
المساحة = القاعدة * الارتفاع المتعلق بها
أي:
A = b * h
مثال: إذا كان لدينا متوازي أضلاع طول قاعدته 5 سم، وطول الارتفاع المتعلق بالقاعدة 3 سم ستكون مساحته:
A = b * h = 5 * 3 = 15 cm2
حساب مساحة متوازي الاضلاع في حال كان الارتفاع مجهول
وفي هذه الحالة، يمكننا استخدام علم المثلثات والزوايا لحساب المساحة، تحسب مساحة متوازي الاضلاع وفق العلاقة التالية:
(A = a * b * sin(x
حيث a و b هما طولا الضلعين المتتالين في متوازي الأضلاع، و x هي الزاوية التي يحصرها هذان الضلعان.
مثال: إذا كان لدينا متوازي أضلاع طولي ضلعيه 3 سم و4 سم، والزاوية بينهما هي 30 درجةً، سنحصل على مساحة متوازي الاضلاع عبر استخدام العلاقة السابقة بالشكل:
A = a * b * sin(x) = 3 *4 * sin(30) = 6 cm2 .
قطعة من الفلين على شكل متوازي اضلاع مساحتها 270سم
مساحة متوازي الاضلاع = طول القاعدة × الارتفاع المناظر لها ( الساقط عليها )
الحل : هنا