المحتويات
٨ ٠ من ١٥٠٠
اننا في موسوعة فيرال التعليمية نستعرض لحضراتكم حلول الأسئلة التعليمية للمنهاج السعودي بالكامل والتي يرغب كافة الطلبة والطالبات التعرف على حلول هذه الأسئلة بسبب مواجهتهم صعوبة بالغة في إيجاد الحل ولذلك يسرنا ان نوفرها لكم في كافة مقالاتنا التعليمية ، ونرحب بحضراتكم واليكم تفاصيل الحل للسؤال المطروح امامنا
٨ ٠ من ١٥٠٠
الأسئلة في موقع فيرال لنساعد الطالب لنجعله متفوق على زملائة خلال مراحله الدراسية ونزيد من قوة ذكائه وحدة تفكيره ليصبح من أوائل الطلبة في صفه الدراسي.
٨ ٠ من ١٥٠٠
الاجابة هي//٠.٨ ٪ من ١٥٠٠ = ١٢.
ترتيب العمليات الحسابية (التي تسمى أحيانًا أسبقية المعامل) في علوم الرياضيات وبرمجة الحاسوب، هي قاعدة تستعمل لتوضيح أي العمليات الحسابية يجب تنفيذها أولًا في جملة حسابية معينة.
وفي علم الرياضيات ومعظم لغات الحاسوب، يتم تنفيذ عمليات الضرب قبل الجمع، وقد كان هذا هو الحال منذ إدخال الترميز الجبري الحديث.[1][2] على سبيل المثال في التعبير 2 + 3 × 4، الجواب هو 14. الأقواس «(..) و{..} و[..]»، لديها قواعد خاصة بها، يمكن أن تستخدم لتفادي الخلط بين العمليات، وبالتالي يمكن كتابة التعبير السابق بالصيغة التالية: 2 + (3 × 4)، ولكن القوسين لا لزوم لهما هنا، لأن الأولوية ماتزال للضرب حتى بدونهما. عندما تم تقديم الأس في القرنين السادس عشر والسابع عشر، فقد تم إعطاء الأسبقية على كل من الجمع والضرب، ويمكن وضعها فقط كخط مرتفع أعلى الأساس.[1] هكذا 3 + 25 = 28 و3 × 25 = 75.
وقد وضعت هذه القواعد لتوضيح كيفية التعامل مع الرموز والعمليات الحسابية، مع السماح باستخدام الرموز كأداة توضيحية فقط غايتها تسهيل العمليات الحسابية وإعطاءها صورة أكثر دقة مما يسهل الحصول على إجابة نهائية صحيحة، ويتحقق ذلك بفهم هذه الرموز وغاية كل واحد منها فمثلًا يمكن استخدام الأقواس () للإشارة إلى أن العملية الحسابية داخل القوس تتمتع بالأولوية عن العمليات الأخرى وكمثال توضيحي (2 + 3) × 4 = 20، بسبب وجود الأقواس أُعطت الأولولية للجمع بالرغم من أولوية الضرب في حال عدم وجود الأقواس، أما عند الحاجة إلى وجود أكثر من قوس في معادلة واحدة يمكن استخدام شكل آخر من أشكال الأقواس لتجنب أي التباس كما في [2 × (3 + 4)] – 5 = 9.