المحتويات
متوازي الأضلاع وشبه المنحرف متشابهان لأن
يعاني بعض طلاب المدارس من صعوبة في البحث عن اجابات الأسئلة التي يواجهون صعوبة في حلها ، ومن بين هذه الأسئة نقدم لكم في هذه المقالة حل سؤال( متوازي الأضلاع وشبه المنحرف متشابهان لأن ) فما هي اجابة هذا السؤال ؟ من حلول كتاب رياضيات ثاني ابتدائي ف 2
في الهندسة الإقليدية، متوازي الأضلاع هو شكل رباعي الأضلاع فيه كل ضلعين متقابلين متوازيان. حيث يكون فيه كل ضلعين متوازيين متساويين بالطول وكل زاويتين متقابلتين متساويتين، وقطراه ينصفان بعضهما.ومجموع زواياه °360
أما شبه المنحرف فهو رباعي أضلاع يكون فيه اثنان من الأضلاع المتقابلة متوازيان. ويمكن تعريفه على أنه رباعي أضلاع له فقط ضلعين متقابلين متوازيين، وبذلك يتم استثناء متوازي الأضلاع من التعريف الذي غالباً ما يعتبر حالة خاصة من شبه المنحرف .
يتشابه متوازي الأضلاع وشبه المنحرف في أن
الاجابة : لكل منهما 4 أضلاع 4 رؤوس
خصائص متوازي الأضلاع
- كل ضلعين متقابلين متساويين.
- كل ضلعين متقابلين متوازيين.
- مساحة متوازي الأضلاع تساوي ضعف مساحة المثلث المشكل بضلعين وقطر.
- كل قطر في متوازي الأضلاع منصف للقطر الآخر.
- يتقاطع قطراه في نقطة تشكل مركز تناظر لمتوازي الأضلاع، وتسمى مركز متوازي الأضلاع.
- أي مستقيم يمر بمركز متوازي الأضلاع يقسمه إلى شكلين متطابقين.
- كل زاويتين متقابلتين متساويتان.
- مجموع مربعات أطوال الأضلاع تساوي مجموع مربعي طولي القطرين (هذا هو قانون متوازي الأضلاع).
- مجموع كل زاويتين متحالفتين (على ضلع واحد) °180.
إن تحقق واحد من الخصائص السابقة في مضلع رباعي محدب يعني أن الشكل متوازي أضلاع، كما أن إثبات أن ضلعين متقابلين متوازيين ومتقايسيين في آنٍ معاً يثبت أن الشكل متوازي أضلاع.