أوجد تبسيط العبارة ٥√ ×١٠√ =
نرحب بكم طلابنا الأعزاء في منصتنا “فيرال ” المرجع الأول للطلاب في حل أسئلة الكتب الوزارية المقررة في المملكة العربية السعودية ، والتي تَبث من أجلكم لتوفير اجابات كافة الأسئلة التي تجدون صعوبة في حلها ، اضافة الى الاجابة عن جميع استفساراتكم حول الامتحانات وماشابه ، وفيما يلي نقدم لكم في هذه المقالة اجابة السؤال المطروح : تبسيط العبارة ٥√ ×١٠√ =
قبل الشروع في الاجابة ، نود توضيح بعض المفاهيم في تبسيط المسائل الجبرية ، فالعبارة الجبرية لها أجزاء وتسمى حدود يفصل بينها عمليات حسابية ، وإن مسألة تبسيط الجذور التربيعية ليست بالتعقيد الذي تبدو عليه، فكل ما تتطلبه هو تعلم خطوات محددة والقليل من الوقت للتعود والممارسة، وسوف يتبين لك مدى سهولتها. تتلخص هذه الخطوات في تحليل العدد إلى عوامل ومن ثم استخراج الجذر التربيعي لأي مربعات كاملة تجدها تحت علامة الجذر. بعد أن تحفظ بعض المربعات الكاملة المعروفة من خلال الممارسة وتعرف كيف تحلل الأعداد، سيكون لديك كل ما يتطلبه تبسيط أي جذر تربيعي موجود.
قبل البدء في حل أي مسألة ، عليك أولاً فهم الهدف من تبسيط الجذور التربيعية هو إعادة كتابتها بصورة يسهُل فهمها واستخدامها في مسائل الرياضيات. أي أن تحليل عدد كبير يؤدي إلى تقسيمه لعددين أو أكثر من “العوامل”، مثل تحويل 9 إلى 3 × 3. ما إن نتوصل إلى هذه العوامل، يمكننا كتابة الجذر التربيعي بصورة أبسط، لدرجة تحويله أحيانًا إلى عدد صحيح تمامًا، مثل: √9 = √(3×3) = 3. اتبع الخطوات أدناه لتتعلم طريقة تطبيق ذلك على جذور تربيعية أكثر تعقيدًا.
الخطوة الثانية اقسم على أصغر عدد أولي ممكن. إذا كان العدد تحت علامة الجذر عدد زوجي، اقسمه على 2. إذا كان فرديًا، جرب أن تقسمه على 3. إذا لم ينتج عن القسمة على أيهما عدد صحيح، انتقل لتجربة القسمة على الأعداد التالية في قائمة الأعداد الأولية أدناه مختبرًا الأعداد كل على حدة حتى تصل لقسمة ناتجها عدد صحيح. لست بحاجة لتجربة القسمة على أعداد غير أولية بما أن جميع الأعداد غير الأولية لها عوامل أولية. لن تحتاج مثلًا أن تقسم على 4، لأن أي عدد يقبل القسمة على 4 يقبل كذلك القسمة على 2، التي حاولت بالفعل أن تقسم عليها ولم تحصل على النتيجة المطلوبة.
- 2
- 3
- 5
- 7
- 11
- 13
- 17
2 محللة بالفعل لأبسط ما يمكن (فهي أحد الأعداد الأولية المدرجة في القائمة أعلاه)، بالتالي سنتغاضى عنها مؤقتًا ونحاول تحليل 49.
لا يمكن قسمة 49 من غير باقٍ على 2 أو على 3 أو 5، ويمكنك التحقق من صحة هذا بنفسك باستخدام آلة حاسبة أو عن طريق القسمة المطولة. بما أن هذه الأعداد الأولية لا تعطينا نتائج صحيحة كما ننتظر من القسمة، سوف نتجاوزهم ونتابع المحاولة.
يمكن قسمة 49 على من غير باق على سبعة. 49 ÷ 7 = 7، بالتالي 49 = 7 × 7
أعد كتابة المسألة: √(2 × 49) = √(2 × 7 × 7).
حتى لو أمكن الاستمرار بالتحليل، لست بحاجة له طالما أنك قد وجدت بالفعل عاملين متماثلين. مثال: √(16) = √(4 × 4) = 4. لو أننا ظللنا نحلل العدد الذي تحت الجذر إلى عوامل أصغر، سنصل في نهاية الأمر لنفس النتيجة لكن بعد المرور على خطوات أكثر: √(16) = √(4 × 4) = √(2 × 2 × 2 × 2) = √(2 × 2)√(2 × 2) = 2 × 2 = 4.
√180 = √(2 × 90)
√180 = √(2 × 2 × 45)
√180 = 2√45، لكن هذه النتيجة يمكن تبسيطها أكثر
√180 = 2√(3 × 15)
√180 = 2√(3 × 3 × 5)
√180 = (2)(3√5)
√180 = 6√5
70 = 35 × 2، بالتالي √70 = √(35 × 2)
35 = 7 × 5، بالتالي √(35 × 2) = √(7 × 5 × 2)
كل من هذه الأعداد الثلاث هي أعداد أولية، بالتالي لا يمكن تبسيطها أكثر من ذلك. كلها أعداد مختلفة ولذلك ما من طريقة ممكن “لإخراج” عددين منهما كعدد صحيح غير جذري. من هنا نستنتج أن √70 لا يمكن تبسيطه.
ما هو حل تبسيط العبارة ٥√ ×١٠√ = –
٥٠√
٢√٥
٥√ ٢
٦√ ٢٥