المحتويات
من الأعداد الأولية العدد مطلوب الإجابة.
من الأعداد الأولية العدد ؟ تعتبر الأعداد الأولية اعداداً صحيحة موجبة اكبر من العدد واحد وتقبل القسمة على عددين فقط هما العدد نفسه والواحد دون باقٍ؛ مثل العدد 13، 17، أمّا الأعداد الصحيحة الموجبة الأكبر من واحد، والتي تقبل القسمة على عدد آخر غيره وغير نفسها فتُسمّى بالأعداد غير الأوليّة أو الأعداد المُركَّبة (بالإنجليزية: Composite Number)، وهي أعداد يمكن تجزئتها، مثل العدد (28) الذي يمتلك عدة عوامل، ويجدر بالذكر هنا أن العددان (0,1) يُستبعدان دائماً من قائمتي الأعداد الأوليّة والمُركَّبة، بينما يُعتبر العدد (2) أصغر الأعداد الأولية، وهو العدد الزوجي الأولي الوحيد.
ما هو العدد الأولي ؟
العدد الأولي والعدد الأول هو عدد طبيعي أكبر قطعاً من 1، لا يقبل القسمة إلا على نفسه وعلى واحد فقط. يُدعى كل عدد طبيعي أكبر قطعاً من 1 وغير أولي عددا مؤلفا. على سبيل المثال، 5 هو عدد أولي لأنه لا يقبل القسمة إلا على 1 وعلى 5، بينما 6 هو عدد مؤلف لأنه قابل للقسمة على 1، وعلى 2 وعلى 3 وعلى 6. تقيم المبرهنة الأساسية في الحسابيات الدور المركزي للأعداد الأولية في نظرية الأعداد: كل عدد صحيح طبيعي أكبر قطعا من 1 يساوي جداء مجموعة وحيدة ما من الأعداد الأولية (بغض النظر عن ترتيب هؤلاء الأعداد داخل هذهِ المجموعة). فإن هذهِ المبرهنة تستلزم إقصاء 1 من لائحة الأعداد الأولية.
لأجل تحديد هل العدد أولي أم لا؟ توجد طريقة سهلة ولكنها بطيئة، تسمى القسمة المتكررة، وتتمثل في قسمة هذا العدد على الأعداد المحصورة بين 2 والجذر التربيعي للعدد المعين. توجد خوارزميات أخرى أكثر فعالية من القسمة، تستعمل في تحديد أولية الأعداد الكبيرة، وخصوصا عندما يتعلق الأمر بأعداد ذات شكل خاص كأعداد ميرسين الأولية. وفي 21 ديسمبر 2018، تألف أكبر عدد أولي تم الوصول إليه من 24,862,048 رقما.
مجموعة الأعداد الأولية مجموعة غير منتهية. وقد برهن على ذلك أقليدس في حوالي عام 300 قبل الميلاد. لا تعرف صيغة ما، جميع قيمها أعداد أولية. ولكن توزيع الأعداد الأولية يمكن أن يخضع للدرس وأن تقام حولهُ النظريات. إن أول مبرهنة تذهب في هذا الاتجاه هي مبرهنة الأعداد الأولية، والتي بُرهن عليها في نهاية القرن التاسع عشر والتي بموجبها الاحتمال أن يكون عدد طبيعي ما n، اختير بصفة عشوائية، أولياً، يتناسب عكسيا مع عدد الأرقام التي يحتوي عليها هذا العدد. وبتعبير آخر، يتناسب عكسيا مع اللوغارتم الطبيعي للعدد n.
خضعت الأعداد الأولية لبحوث عديدة، مع ذلك تظل الكثير من الأسئلة الأساسية مثل فرضية ريمان وحدسية غولدباخ التي تنص على أن أي عدد زوجي أكبر قطعاً من 2، يمكن أن يكتب على شكل مجموع عددين أوليين، وحدسية الأعداد الأولية التوأم والتي تنص على أن عدد الأزواج من الأعداد الأولية والتي يكون الفرق بينهما مساويا ل2 هو عدد غير منته، وهنالك مسائل غير محلولة حتى الآن بالرغم من مرور أكثر من قرن على طرحها. والسبب الأساسي يعود إلى عدم فهم العلماء لطريقة توزيع الأعداد الأولية، على عكس الأعداد الفردية أو الزوجية على سبيل المثال، وكانت هذه المعضلات سببا في تطورات كثيرة عرفتها نظرية الأعداد، التي اهتمت بالخصائص الجبرية والتحليلية للأعداد. وتستعمل الأعداد الأولية في عدة مجالات في تكنولوجيا المعلومات كالتشفير باستخدام المفتاح المعلن. حيث تعتمد أساسا هذهِ التقنية على خصائص معينة كصعوبة تعميل الأعداد الكبيرة إلى جداء أعداد أولية.
حل سؤال من الأعداد الأولية العدد
هناك طريقة لتحديد الأعداد الأوليّة من خلال استخدام إحدى الطرق الآتية: تمييز العدد المركب عن العدد الأولي وفيما يأتي طريقة تمييز العدد المركب عن العدد الأولي:
- العدد المركب
يتميز العدد المركب بأنه العدد الذي يقبل القسمة على عدد أولي يقل عن أو يساوي جذره دون باقٍ؛ فإذا كان العدد (ن) مركب، وبالتالي فإنه يقبل القسمة دون باقٍ على أحد الأعداد الأولية التي تقل عن أو تساوي ن√. العدد الأولي: وفي حال عدم قابلية العدد المركب للقسمة دون باق على أحد الأعداد الأولية التي تقل عن أو تساوي ن√، فهذا يعني أن العدد أولي؛ فمثلاً العدد 23 لا يمكنه القسمة على أي عدد أولي يقل عن أو يساوي 23√ دون باقٍ، وهذا يُثبت أنه أولي.
- التحليل إلى عوامل:
فمن خلال هذه العملية يمكن لعلماء الرياضيات أن يحددوا بسرعةٍ ما إذا كان هذا الرقم أوليًّا أو لا، ولاستخدام طريقة التحليل إلى عوامل يجب أن تعلم أنّ العامل هو أي رقمٍ يمكن ضربه برقمٍ آخر للحصول على نفس النتيجة، فعلى سبيل المثال إنّ العوامل الأولية للرقم 10 هي 2 و5؛ لأنّه إذاما ضُربت هذه الأعداد الصحيحة ببعضها فإنّ الناتج سيكون 10، وكذلك فإنّ الرقمين واحد و 10 يعتبران أيضًا عوامل للعدد 10 لأنّه لو ضرب أحدهما بالآخر فإنّ النتيجة ستكون 10، ولكنّ العوامل الأولية للعدد 10 هي 2 و5 فقط؛ لأنّ كلًّا من الواحد والعشرة ليسا أعدادًا أولية.